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A two-dimensional time-dependent heat transport equation at the microscale is
derived. A second order finite difference scheme in both time and space is intro-
duced and the unconditional stability of the finite difference scheme is proved. A
computational procedure is designed to solve the discretized linear system at each
time step by using a preconditioned conjugate gradient method. Numerical results are
presented to validate the accuracy of the finite difference scheme and the efficiency
of the proposed computational procedureg 2001 Academic Press
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1. INTRODUCTION

Microtechnologies based on high-rate heating on thin film structures have develo
rapidly in recent years due to the advancement of short-pulse laser technologies and the
plications to micromanufacturing processes [1, 3, 13]. These microtechnology applicati
frequently deal with the thermal behavior of thin films [10]. Components of microelectron
devices such as thin films of metals, and dielectrics such as@iSi semiconductors, can
be simulated using computers instead of actual prototyping. The demand for fast-switcl
in electronic devices has precipitated the reduction of the device size to microscale.
side effect of device size reduction is an increase in the heat-generation rate that lea
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a higher thermal load on the microdevice. Studying the thermal behavior of thin films
essential for predicting the performance of a microelectronic device or for designing
desired microstructure.

The microscale heat transport equation arises from many applications, e.g., the phc
electron interaction model [17], the single energy equation [21, 22], the phonon scatter
model [9], the phonon radiative transfer model [10], and the lagging behavior model [:
20, 21].

Numerical solution of the one-dimensional microscale heat transport equation has b
considered by several authors. Qiu and Tien [16] used the Crank—Nicholson finite differe
scheme for solving the phonon electron interaction model. Joshi and Majumdar [10] sol
the phonon radiative transfer model in a one-dimensional medium by using the expl
upstream differencing metho@zisik and Tzou [14] studied the lagging behavior by solving
the equation in a semiinfinite interval. Dai and Nassar [5] considered the numerical solut
of the microscale heat transport equation in a finite intexval[0, ], where the unit of is
in microscale. Recently, we employed a fourth order compact finite difference discretizat
scheme to solve the one-dimensional microscale heat transport equation and we obtair
highly accurate numerical solution [23].

In this paper, we generalize the microscale heat transport equation to two dimensi
and propose a set of numerical strategies to solve the governing equation efficiently.
heat transport equations used to describe the thermal behavior of microstructures ce
expressed as

. aT
Yy

G, y,t+1q) = —kVT(X, y, t + 77),

whereq = (q1, g2) is the heat flux, anda, ) are the heat flux components in thand

y directions, respectivelyl is the temperaturek is conductivity, o is density,C, is the
specific heat, anQ is a heat sourcey andrr are positive constants which are the time lags
of the heat flux and temperature gradient, respectively. In the classical theory of diffusi
the heat flux vectofq) and the temperature gradigtM T) across a material volume are
assumed to occur at the same instant of time. They satisfy Fourier’s law of heat conduct

g, y,t) = —kVT(x, y,1). (2

However, if the scale in one direction is at microscale, i. e., is of ordeth lthen the heat
flux and temperature gradient in this direction will occur at different times. The heat flt
and the temperature gradient in the microscale direction satisfy (1) instead of (2). Thisis
so-called lagging effect [21]. Using Taylor series expansions, the first order approximat
of (1) can be written as

g 5
g+ zqa_? - —k{VT n tTE[VT]} . 3)

If we consider a film with width an order of 0;Am and length an order of 1 mm, then the
component of the heat flux in thedirection satisfies the traditional Fourier law, while the
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component in the direction satisfies (1). Hence, we have

1 :_k87 (4)
90 aT 9 (0T
S Ry AR 5
%+ T {8y+ﬁ3t<8y>} ©®)

In two dimensions, Eg. (1) can be written as

a2 a(h
oMz _ C oM
ay P tax — @

Substituting (4) into the above equation and simplifying, we obtain

a0y aT 9°T
1 _ 4 k—
Per o TR e

By = +Q. (6)

Differentiating (5) with respect tg yields

E)CIQ 92 02 0°T a [0°T
- k| (). 7
ay T %50y Lay2 BT (ay2 )

Substituting (6) into (7) and after simplification, we obtain the following equation:
oT 3T
,OCp <E + Tq W)
ad 3T 3T 3°T  3°T 9Q
=k—|(tgq— — ki — + — — .
ot (Tq a2 T 8y2> + <8x2 + 8y2> + (QJ”‘* at )
Denotinga = k/pC, and S= (Q + rq%)/k, we have the governing two-dimensional
microscale heat transport equation in the form of
19T | 7qd°T 33T BT 92T 97T
o ot oz = g2 T 2T o2 T vz
adt o ot atax atay ax2  Jy

+S (8)
The initial and boundary conditions are:

aT
T(X3 ys 0) = TO(Xs y)v E(Xv y’ 0) = Tl(xv y)v

T(O, y, t) - T2(y’ t)7 T(L7 Y»t) - T3(y’ t)»
T(X,0,t) =Ta(x,t), T(X, €e,t)=Ts(X,t).

The parameters, tq, andzr in Eq. (8) have their physical domains of definition related tc
certain material properties in microscale heat transfer. They are left as free parametersi
study for more general testing of elliptic, hyperbolic, and parabolic cases, and for numer
testing of our proposed discretization scheme and preconditioned iterative solution met

The rest of the paper describes techniques that we propose to solve the microscale
transport equation (8). In particular, we introduce a finite difference scheme to discretize
in Section 2. In Section 3, we prove the unconditional stability of the finite differenc
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scheme with respect to initial values. A preconditioned conjugate gradient iterative mett
is discussed in Section 4 to solve the sparse linear systems arising at each time ste
Section 5 experimental results are presented to validate the proposed numerical techni
Concluding remarks are given in Section 6.

2. FINITE DIFFERENCE DISCRETIZATION

Dai and Nassar [5] comment that direct discretization of (8) leads to a finite differen
scheme that is three-level in time. In such a case, stability of the discretization scheme |
be difficult to ascertain. To avoid a three-level discretization scheme, following the idea
Dai and Nassar, we introduce an auxiliary function as [5]

oT
=T+t (9)

and change (8) into

100 9 92T 92T 2T 3T
( > +S (10)

aat o\ T o) Taxe T oy

The initial and boundary conditions can be reformulated as

T(Xv yv O) = TOa T(07 yv t) = T27 T(L9 ys t) = T31 T(X3 Ov t) = T47
aT
T e)=Ts, 0XY.00=To+14T1. 60, y.t) =T+ rqa—tz,

0Ty dTs

|3
(% O =Tsa+19—, 00X, €,)=Tg+179—.
(X, ) 4 q 9t X, e, 1) 5 q at

a
G(Lv yvt) = T3+77q¥s

Now consider a spatial domaina = [0, L] x [0, €], wheree is at the microscale of order
0.1 um, ande « L. Let Q be discretized with uniform meshes with grid pointsxat=
IAX, y; = JAY,i,j=0,1,..., N, whereNAXx = L andNAy = ¢. The number of grid
poits in thex andy directions could differ. For convenience we only consider the case
which they are equal.
We denote the standard central difference operators as
Tt —2Tij + Tiquj

2 2
1) T|J = Ax2 and 8yTi,j =

Tj-1—2Ti,j + Tij11
Ay?

: (11)

which are of accuracy orde@d(Ax?) and O(Ay?), respectively. Note thahx > Ay in
general.

We discretize (10) using a Crank—Nicholson type integrator with the central differen
operators (11) at the time stép + %)At given as

1

1
(= 00 = o (2T + wrsTY) = (d2TY + wr o2 T
+

| =

2[( 2Tn+1+82-[-n+1) (3)%1"“1 +3§TI”J)] + ”T% (12)

where At is the uniform time step size. This scheme obviously has an accuracy order
O(At? + AX? + Ay?).
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Equation (9) can be discretized by a second order trapezoidal method with respe
timet,

1 1 T
SO o) =S (M7 +T0) + S (T + ), (13)
which can be solved fot"/* as
2t 2t
+1_ a | nit q
o= <1+ At>Tif]i + (1 - At)ﬂ' — 67} (14)

Substituting (14) into (12) and after simplification, we have

g, 1\ orni (AR PO 1 279 \ rnt1

B P Ly z)sert o = (14 29 )

<At +2> gt <At T2 aAt\" At )
1 214 q 1\ T 1 n+1
:m[(l_ﬁ>1—i?j_Zeirjj]+(ﬂ_§)8x-l—i?j+ I LA
(15)

which will be used to computéif‘j*l. Then the computeilfif‘j+1 is substituted into (14) to
compute@i'fj-”. The corresponding discretized initial and boundary conditions are given

T =T, Toi=M T8, =T}, Th=T). T\= ). (16)

0 N aT\" aT3\"
Gi,j = (To+ g To)ij» eo,j = T2+TqW ) QN,j = T3+TqW . A7)
j j

aTa\" aTs\"
6 = <T4 + fqﬁ)i , O = <T5 +trag0 - (18)

3. STABILITY ANALYSIS

We shall prove the unconditional stability of the finite difference schemes (12) and (-
with respect to the initial values. The technique that we will use in our proof is the discre
energy method [4, 11]. To this end, we denote@the set of discrete values

{ut={ul;}, withug; =ul; =ulo=uly=0 1<i,j=<N}
We then make the following norm definitions for anf, v" € G:
N-1
oM =AY ull, uP =t u.
ij=1
The following results can be verified easily [4, 11].

LEMMA 3.1. Forany U', v" € G, the equalities

(82u", v") = —(Bu", 8w, (85U ") = —(Byu", 8"
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hold, where

n n
_Yjp—u

n n
no_ Yignj — Ui n i
1] Ay

Ol = AX

are the forward difference operators.

THEOREM 3.2. Suppose thafT", 61} and {V/";, &";} are the solutions of the finite

difference schemé&&2) and(13) which satisfy the boundary conditio(t6)—(18), and have
different initial valueg(T?,, 6°;} and {V%;, £0;}, respectively. Let"; = 6" — &, €' =

T" — V", then{w(';, €} satisfy

1
;nw”n2 + 2741I8x€" (12 + (tq + 1) I8y€" |12

Rk

< S w2 + 214116x€°l12 + (tq + 1) 18y€° |12, (19)

for any 0 < nAt < tgop This implies that the finite difference scheme is unconditionall
stable with respect to the initial values.

Proof: {T"}, 6"} and {V{"}, &";} are both solutions of (12) with the same boundary

conditions, squw", €"} € G, and they also satisfy

1 1
3 (wln]“l — wﬂj) =X (th)%eﬁl + 11-8)2,6{?}“1 — rqé)%eirjj — TT(S)Z/GEI-)
1
5 (Sl 8Yel| + 8xely + 83l
1 2( _n+1 n 1 2/ _n+1 n
= §5x(€i,j +¢) + é‘sy(ei,j +e))
Tq 1 o 1
+ E‘?f(fﬁ - eirjj) + E(Sf{(e{j}“ - firjj)' (20)
From (13), we have
274
wﬁl + wi'jj = (e{j}rl + ei’jj) + E(e{j]ﬂ + e{jj) . (22)

We can easily get the following results by using (21) and the definitions:

27,
(€M w4 w") = [l + M7 + A—;‘<||e“+1||2 — lI€"®), (22)
27,
(€Mt — e ™) = “BH(e™ = B + 1™ — emE,(29)
and
27,

Bx (€™ + €M), S (™ + w™) = [I8x (€™ + M| + A;‘ (18x€™ 1% — [18xe™1?),
(24)
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27,
(Bx (€™ — €M), Sx (Wt + wM) = A—?nax(e”“ — M2+ [18x€™HI% — I8k, (25)

27,
By (€™ + €M), syt +w") = 18, (€™ + €MI* + q(nay L1218y (12,
(26)

27,
By(e™t — €M), sy(w™ + wM) = A—?nsy(e”“ — eMZ+ [18ye™I% — [18y€"2. (27)

We now multiply both sides of (20) byw{T* + w’;) Ax? and sum over and ] to get

1
——(lw™H2 = w"?)

a At
_ }(52(€n+1+6n) wn+1+wn) +1‘(82(6n+1+6n) wn+1+wn)
- 2 X b 2 y 9
+ ~a (35(6”+1 _ En)’ wn+1 + wn) + T_T (3§(En+1 _ en), wn+1 + wn). (28)

At At

We estimate each term on the right-hand side of (28). Using Lemma 3.1 and (24), we
get

(Si(en-&-l_i_en), wn+1+ wn)

NI =

1
_7(8X(En+1 + 6n)’ 8X(wn+1 + wn))
27,
=— {l|3x(€n+l+6 )|IZ + °'<||8xe”+1|| ||8xe”||2>]. (29)
Similarly, using Lemma 3.1 and (26), we have
1 2, n+1 n n+1 n
E((Sy(e +€e),w +w)
1 n+1 my2 . 2T n+1;2 2
=3 18y(e™ 4+ €M +E(||5y€ 17— ldyell) |- (30)

Using (25) and (27), we can get the following results for the other two terms on the right-he
side of (28):

At( ( n+1 Gn)’ wn+1 + wn)

271
At( 118k (€™ — €M 12+ [|8xe™HIZ — ||3x6I|2>- (31)

At(82(€n+l En)’ wn+1 + wn)

27
= ——( As 18y (™ — €M I? + [[8ye™H? — ||5y6"||2>- (32)
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Substituting (29), (30), (31), and (32) back into (28), we have

1 27,
a—At(nw“*ln [lw" ||)———[||6x(e“+1+e)|| + q(nsx M2 — ||6xe“||2>]

1 2‘L'q

-5 [nay(e”“ +eMZ+ E(H(Syef‘“nz —~ ||8ye||2>}
T 27,
A"t (Ajnax(e““ — M7+ [18xe" % — ||8xe||2)

2t
——( “s y(€n+l_€n)”2+||5y€n+l||2_||5y€n||2)~ (33)

Simply dropping the four negative terms from the right-hand side of (33) yields

1
—<||w”+1||2 — [w"[1?
27 + 17
< - A;‘nax etz T N [18y€™ 1% + “naxe [ R A T 8,€m12,

which is

1
- w2 + 224 18xe™ 12 + (g + 77)[18ye™ |7

[N

< Z[lw"[|? + 214 )18x€"|1? + (zq + Tr)lI8ye" 2. (34)

Q

Equation (19) follows from (34) by recursion with respechto

4. SOLUTION STRATEGIES

In order to compute the solution of (15) a pentadiagonal matrix needs to be solvec
each time step. The solution of this linear system dominates the total simulation c

Direct solution methods are not usually practical for large valué$ dtie to the excessive

memory and computational requirements. A common sparse matrix solution strategy in
field of engineering is to use either a direct band solver or an alternating direction impli
(ADI) solution scheme [15] to compute the solution at each time step. We propose to us

preconditioned iterative method to solve the sparse linear systems.
Let us multiply both sides of (15) by 1 and rewrite it in a simplified (standard) form

AT+ b(TI + Th) + e(Th5 + ) = A, (35)

where the coefficients and the right-hand side are

1 T 1
b=——"(-2+2),
Ax2<At+2>
1 T 1
C=—>—+2],
AyZ(At+2>
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2 (mg 1), 2 +1+1 14 2
T AxZ\At 2 Ay? 2 aAt At

1 21,
= — (1+ —) —2(b+0),

and

=D s (5D
- & (% - %) (T +Thy) — Aiyz‘(% - %) (T e+ T)
+ Ztelnl + g (36)
Hence, the system of linear equations (35) is symmetric and strictly diagonally domine
Let us further scale (35) with and assemble the linear system of equations as

AT = F, (37)

whereA is the coefficient matrix with 5 diagonals (a unit main diagongiy the solution
vector, and- is the right-hand side vector. Sinfas a Stieltjes matrix (symmetric positive
definite M-matrix), we should expect a fast convergence rate for most iterative meth
used to solve (37). A particularly important iterative method for solving symmetric positi
definite linear systems is the conjugate gradient method [8]. To accelerate the converg
rate of the conjugate gradient (CG) method, a preconditibhier usually applied to (37)
to transform it into a more favorable form:

M~IAT = MIF. (38)

The key issue in many such computations is to find a good preconditymerich should be
inexpensive to compute and should allow easy realization of a solution. The preconditio
conjugate gradient method is usually abbreviated PCG.

As noted above, the linear system (37) is not difficult to solve for most iterative metho
The important issue that interests us is how to solve it most efficiently in a time-depenc
situation, e.g., in the microscale heat transport simulation. Note that (37) needs to be sc
at each time step with the same coefficient matrand a different right-hand side Thus
an iterative method that converges slowly will not be suitable. A direct method that does
have much fill-in would be much more appealing. A compromise is to use a fast iterat
method coupled with a very accurate and robust preconditioner so that (37) can be so
in a few iterations at each time step.

We implemented one of the simplest preconditioners based on the incomplete Chole
(IC) factorization ofA. SoM is constructed with a Cholesky factorizationffout only the
entries corresponding to the nonzero positiona afe computed and stored [12]. Henkk,
is as sparse @sand contains five diagonals. This simple IC preconditioner works so well f¢
the current problem that we consider the implementation of other powerful precondition
strategies unwarranted [18, 19].
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The IC algorithm we used is a generic IC procedure for general sparse matrices ta
from [7]. For reference convenience, it is reproduced in Algorithm 4.1, where we use 1
notationsM = (m; ;) andA = (& ;).

ALGORITHM 4.1. Procedure for incomplete Cholesky factorization

1. my 1 = J/ai1.
2. Fori =2ton

3. Forj=1toi -1

4 If & ; = O thenm; ; = O else

S. M = @) — Sopct MikMj /M, j
6

mii =4/a — ZL_:ll m?y.

Since A is a Stieltjes matrix, Algorithm 4.1 is guaranteed to finish [12]. Algorithm 4.1
actually computes a lower triangular mathk_. The preconditioner is then taken bls=
ML M/ . For the current problem with a matrix of five diagonals, it is possible to have a mo
efficient implementation of PCG using the ideas of Eisenstat [6]. Since we are intereste
using our code in more general situations, the Eisenstat implementation is not adoptec

Remarks. There are some aspects of implementing a preconditioned CG method t
should be considered.

e Initial guess: ateach time stép+ 1) At, the initial guess oTif‘jJr1 forthe PCG iteration
is taken as the solution of the previous time st€p. This is especially important when
nis large and]'if‘j+1 is approaching steady state, since in the case of laf@ed largen),
max ;| T, — T | is small.

e Stopping criterion and tolerance: an iteration scheme may have various stopping
erances to terminate, corresponding to various stopping criteria. The one most commy
used is a measure of the reduction rate of the residual in a certain norm, relative to the in
residual norm. Such relative tolerances may not take advantage of a good initial gues:
in the current case, if the stopping criterion is too strict. On the other hand, an overly libe
stopping criterion may result in an approximate solution that is not fully converged to t
truncation accuracy. In out tests, the two-norm residual reduction rate’ofd® set. A
stricter stopping tolerance could not decrease the error.

e Scaling matrix: the coefficient matrix may have very large entries due to the appeara
of Ax? andAy? in the denominators of the representationg,df, ¢, and . Since the
y direction is at the microscale/Ay? can be quite large. It can produce very large value:
for the coefficientsa, ¢, and for the right-hand sidg";. We failed to construct the IC
preconditioner using the 32-bit arithmetic computation with large values,afue to the
overflow of data representation. This problem was not present when the 64-bit arithm
computation was implemented. However, it is preferable to scale the linear system |
coefficient matrix and the right-hand side) by a factor? Ay? so that all computation of
coefficients and the right-hand side is performed with moderate size numbers. After tl
are computed, each equation is then scaled toymake the main diagonal unit.

e Ordering of unknowns: it is known that the ordering of the unknowns can affect tt
convergence rate of the PCG method with stationary iterative methods as preconditior
We expect that the ordering of the unknowns may affect our implementation |sinise
usually much larger thajb|. In fact, if they axis is at the microscale, the natural (lexico-
graphical) ordering will order the grid points following tiedirection first, which is the
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strong direction. Studies on ordering effect on PCG preconditioned by stationary itera
methods in solving convection diffusion equations show that the ordering following tl
strong direction favors PCG convergence [2]. However, the ordering effect did not app
in our numerical tests, partly because the PCG method (preconditioned by IC) convel
too fast to allow any significant convergence difference to be noticed.

The entire simulation process is formulated in Algrithm 4.2.

ALGORITHM 4.2. Simulation procedure for microscale heat transport equation

Given initial and boundary conditionst, Ax, Ay, and timétsiop
ComputeT © andg®
Compute coefficients, b, ¢, and construct th&C preconditioneM
Forn=0,1, ..., tsep/At, do

ComputeF" from (36)

SolveAT™1 = F" using thePCGmethod

Compute®"*+* from (14)
End do.

©NoGOMWDNPE

5. NUMERICAL VALIDATIONS

Numerical experiments were conducted to validate the proposed discretization sch
and the iterative solution method. A model problem was constructed by setting,
7q = % + 1%, andrr = % + 1075, on a rectangular domain®x < 1,0 <y < 107*.
The boundary and initial conditions were set to satisfy the exact solution as

T(X, Y, t) = e " sin(x) sin10*y).

As mentioned previously, the PCG iteration was terminated when the two-norm resid
was reduced by a factor of 10The errors reported were the maximum absolute errol
between the approximate solution and the exact solution ag;iiax — Tif’j*l| att = tstop.
The code was written in standard Fortran 77 programming language and was run on an
Power Challenge workstation using 64-bit arithmetic.

We first computed a few simulations using various valued ahd At for tg,op = 1. The
maximum absolute errors of the simulations are listed in Table I. We find that, in all cas
the errors are very small but do not decrease when the spatial mesh is refined. (The <
increase of errors wheN is large was likely caused by rounding errors.) These results a
very interesting. In all tests, there was no oscillatory solution computed for any of the varic
choices ofAt, Ax?, andAy?. This verifies the unconditional stability of the proposed finite
difference scheme.

We also did experiments using different numbers of grid points i tiredy directions.

In particular, we used, = 2Ny in our tests and repeated the tests done for Table I. Tt
maximum absolute errors observed were almost the same as those reported in Table |
to the fact that the spatial mesh grid does not affect the final accuracy significantly for t
test problem.

In order to understand why the finite difference scheme is insensitive to refinemen
the spatial mesh grid, we plotted in Fig. 1 the maximum absolute errors at each ti
stept with N = 101 andN = 201. We see that, although the maximum absolute erro
for both N = 101 andN = 201 tend to become very small aglapses, the maximum
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TABLE |
Maximum Absolute Errors in the Computed Solution with Various N and At?

At/N 11 21 51 81 101 151 201

0.01  4.00£7) 4.06C7) 4.08(7) 4.08C7) 4.08(7) 4.08C7)  4.08(7)
0.005 9.65(8) 9.79(-8) 9.83(-8) 9.84(-8) 9.84(8) 9.84(-8)  9.84(8)
0.001 8.44(10) 8.82(-10) 8.93(10) 8.95¢10) 8.96(10) 8.96(10) 8.96(10)

AL =1¢e=10")

absolute errors are smaller with = 201 than withN = 101 whent is not very large.
However, the error difference is only within the magnitude ofééven for smalt. This
experiment demonstrates that finer spatial mesh does produce more accurate solut
Since the maximum absolute errors with all spatial meshes converge to zero as the €
solution converges to zero whens large, they do not differ very much for largeThis
explains the interesting but strange data shown in Table I.

In order to show the correctness of the finite difference scheme, we conducted ano
set of experiments usinly = ¢ = 1. This choice does not reflect the microscale effect o
the test problem, but only shows that the finite difference scheme does react to the ch:
in spatial mesh. The results in Table 1l show that, in general, smaller maximum absol
errors are obtained when the mesh is fine.

x10'G
7 T T T T T T T T T
6 4
5F 4
@
<}
@
o4t :
=
[=]
(7]
< Solid line: N = 101
£
g 3 Dashdot line: N = 201 E
=
[
s
2 .
1 .
0 1 1 ] ] = [ b 1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Time t

FIG. 1. Comparison of maximum absolute errors at each time sfep N = 101 andN = 201. (At =
0.00L tgop= 1.0, L = 1,6 = 107%)
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TABLE Il
Maximum Absolute Errors in the Computed Solution with Various N and At?

At/N 11 21 51 81 101 151 201

0.01  452(3) 1.63(3) 2.76(4) 4.99C7) 4.19C7) 457¢7) 4.12(7)
0.005 452(3) 1.63(3) 2.76(4) 1.89¢7) 1.10C7) 1.47¢7) 1.027)
0.001 452(3) 1.62(3) 2.76(4) 9.01¢8) 102(8) 4.77¢8) 3.009)

AL=e=1)

Figure 2 compares the (unpreconditioned) CG and PCG with respect to the nurr
of iterations (left panel) and the total CPU time in seconds (right panel), when differe
spatial meshN was used. PCG takes many fewer iterations than CG to converge wt
N is large. The CPU time for PCG is also smaller whenis large. However, CG is
shown to be more efficient wheN < 151. This is because of the diagonal dominanc
of the coefficient matrix. It makes most simple iterative methods converge fast withc
any complicated implementation. However, for large linear systés (151), the fast
convergence of PCG does demonstrate the usefulness of the IC preconditioner. Note
for this particular problem, the preconditioning overhead can be reduced by using
Eisenstat implementation [6].

Figure 3 shows the numbers of iterations of CG and PCG at each time steld witA01
and At = 0.001. The number of iterations of PCG is fixed at 3 throughout the enti

11 T T T T 600 T T T T
A/ I:
L / | !
10 ; |
7 500 !
or / 1 I
/ !
8t ’ i '/
! g 400F ;
! £ |
é’ 7 ./ E § /
B / -
— . [ =
2 F; o
5 6 / 1 £ 300F .
3 >
3 s !/ Dashdot line:CG - =
! 3
‘ F 200} l
at / .
. / '
. / .
3r i E o
! Solid line: PCG 100 Solid line: PCG
ot —1 | ~
/ .
1
1 F ] 1 1 1 o 1 i
0 50 100 150 200 250 1] 50 100 150 200 250
Number of intervals N Number of intervals N

FIG. 2. Comparison of iteration numbers and total CPU time in seconds between PCG and CG for solv
the test problem with varioud. (At = 0.001, tyo, = 1.0.)
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FIG. 3. Comparison of iteration numbers between PCG and CG for solving the linear syflem2(Q1) at

each time step. (At = 0.001, tg,, = 1.0.)

simulation. The number of iterations of CG increases, statisticallpasomes large. We
can say that PCG is more robust than CG for solving large sparse linear systems.

6. CONCLUDING REMARKS

We have derived a two-dimensional governing microscale heat transport equation
a few numerical techniques to solve the equation. We proposed a finite difference sch
to discretize the governing equation. The finite difference scheme has been proved t
unconditionally stable with respect to initial values. A preconditioned conjugate gradie
method is used to solve the resulting sparse linear systems. The computational proce
proposed has been verified by the numerical experiments to be efficient and accurate.

N
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